
A Simple Bias and Uncertainty Scheme for Tropical Cyclone Intensity

Change Forecasts

BENJAMIN C. TRABING,a K. D. MUSGRAVE,a M. DEMARIA,a AND E. BLAKEb

a CIRA/CSU, Fort Collins, Colorado
b NOAA/NWS/National Hurricane Center, Miami, Florida

(Manuscript received 19 April 2022, in final form 9 August 2022)

ABSTRACT: To better forecast tropical cyclone (TC) intensity change and understand forecast uncertainty, it is critical
to recognize the inherent limitations of forecast models. The distributions of intensity change for statistical–dynamical
models are too narrow, and some intensity change forecasts are shown to have larger errors and biases than others. The
Intensity Bias and Uncertainty Scheme (IBUS) is developed in an intensity change framework, which estimates the bias
and the standard deviation of intensity forecast errors. The IBUS is developed and applied to the Decay Statistical
Hurricane Intensity Prediction Scheme (DSHP), the Logistic Growth Equation Model (LGEM), and official National
Hurricane Center (NHC) forecasts (OFCL) separately. The analysis uses DSHP, LGEM, and OFCL forecasts from
2010 to 2019 in both the Atlantic and east Pacific basins. Each IBUS contains both a bias correction and forecast
uncertainty estimate that is tested on the training dataset and evaluated on the 2020 season. The IBUS is able to reduce
intensity biases and improve forecast errors beyond 120 h in each model and basin relative to the original forecasts. The
IBUS is also able to communicate forecast uncertainty that explains ∼7%–11% of forecast variance at 48 h for DSHP
and LGEM in the Atlantic. Better performance is found in the east Pacific at 96 h where the IBUS explains up to 30% of
the errors in DSHP and 14% of the errors for LGEM. The IBUS for OFCL explains 9%–13% of the 48-h forecast uncer-
tainty in the Atlantic and east Pacific with up to 30% variance explained for east Pacific forecasts at 96 h. IBUS for
OFCL has the capability to provide intensity forecast uncertainty similar to the “cone of uncertainty” for track forecasts.
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1. Introduction

Forecasting tropical cyclone (TC) intensity change remains
a challenge for forecasters because of the complex interac-
tions between the convective, mesoscale, and synoptic scales
in addition to the reliance on an accurate track forecast (Kaplan
et al. 2010). Although track forecasts have been clearly improv-
ing over the last several decades, intensity forecasts have been
improving at a lower rate (DeMaria et al. 2014). Since 2010,
Cangialosi et al. (2020) found that the skill of intensity guid-
ance has increased due to improvements in the numerical
weather prediction (NWP) models stemming from the Hurri-
cane Forecast Improvement Project (HFIP; Gall et al. 2013),
consensus aids, rapid intensification (RI) aids, and the ability
of forecasters to synthesize the data. In addition to improving
hurricane track and intensity forecasts, estimates of uncertainty
of those parameters also needs to be improved in order to com-
municate risk (Marks et al. 2019). The National Hurricane
Center (NHC) uses the “cone of uncertainty,” which is a static
estimate of uncertainty using the 67th percentile of track errors
from the past five years, to provide an empirical estimate of
track errors. At this time, no such uncertainty product is pro-
vided for intensity forecasts by NHC. Although ensembles
have become an important source for uncertainty estimation,
estimating uncertainty in deterministic models is inherently
more difficult. It is the goal of this manuscript to offer a simple

technique to both improve biases in deterministic intensity
forecasts and assess the forecast dependent uncertainty.

When making track forecasts, forecasters at NHC utilize the
prediction of consensus tropical cyclone track errors provided
by the Goerss predicted consensus error (GPCE; Goerss 2007).
GPCE was expanded for intensity forecasts to provide esti-
mates for the lower and upper bounds for intensity forecasts
to be correct at the 67th percentile, which is also utilized by
forecasters in real time (Goerss and Sampson 2014). The
Monte Carlo Wind Speed Probability (MC-WSP) model
uses the GPCE consensus track spread and the NHC fore-
cast to estimate the probability that 34-, 50-, and 64-kt winds
(1 kt ≈ 0.51 m s21) will occur, which is able to capture some
estimate of forecast uncertainty at those wind speed thresh-
olds (DeMaria et al. 2013). In contrast to the track, the
MC-WSP model uses only climatological intensity errors
and the NHC forecast to provide uncertainty for the inten-
sity forecast. Bhatia and Nolan (2013) found that individual
forecast model errors have a dependence on select predic-
tors, which led to the development of the Prediction of
Intensity Model Error (PRIME) model (Bhatia and Nolan
2015). Bhatia et al. (2017) showed that PRIME was able to
skillfully predict model error using a stepwise multiple linear
regression framework to improve consensus forecasts. PRIME
was never put into operations and is now defunct due to its
dependence on the Geophysical Fluid Dynamics Laboratory
(GFDL) model, which was retired in 2017. Although
GPCE and PRIME predict consensus model errors to im-
prove forecaster guidance, GPCE and PRIME do not pro-
duce error estimates for NHC forecasts that can potentially
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be used to communicate risk or NHC forecast uncertainty to
the public and private interests.

To improve forecasts of intensity, we must first understand
the inherent biases of intensity forecasts to characterize where
improvements can be made. Trabing and Bell (2020) showed
that rapid intensity changes correspond to the tails of the in-
tensity error distributions, and showed that larger NHC fore-
cast errors can be expected in thermodynamic environments
favorable for intensification. Bhatia and Nolan (2013) demon-
strated that the high variance in intensity forecast performance
between different storms, models, and days is often dependent
on TC attributes and synoptic conditions. Trabing and Bell
(2020) similarly showed that large forecast errors often occur
in favorable thermodynamic and kinematic environments for
intensification contributing to larger biases for RI forecasts
compared to rapid weakening (RW) forecasts. The depen-
dence of forecast errors and biases on the intensity change
suggests that forecast uncertainty can be estimated based on
intensity change forecasts. In both PRIME and GPCE, the
initial intensity and the forecast intensity are key predictors
in the forecast error and warrants the investigation into
whether intensity change forecasts and their corresponding
error characteristics can provide simple estimates of fore-
cast uncertainty.

In this manuscript, we will develop a simple Intensity Bias
and Uncertainty Scheme (IBUS) that can be implemented in
real time. The IBUS will both quantify inherent deterministic
forecast biases to improve forecasts and evaluate forecast
errors to communicate forecast uncertainty. The following
section will detail the data used in this study. Section 3 will
explore the intensity change forecast distributions to moti-
vate the techniques used to create the IBUS. In section 4 we
will test and evaluate the IBUS for two statistical–dynamical
models. Section 5 will explore the use of IBUS on NHC fore-
casts. A summary and discussion of potential uses and limita-
tions for IBUS will be offered in section 6.

2. Methodology

a. Data

In this work we will utilize two operational statistical-
dynamical models: the Statistical Hurricane Intensity Prediction
Scheme (SHIPS; DeMaria and Kaplan 1994, 1999; DeMaria
et al. 2005) and the Logistic Growth Equation Model (LGEM;
DeMaria 2009). SHIPS uses multilinear regression to forecast

intensity change and includes both oceanic and atmospheric
predictors. The decay SHIPS (DSHP) model includes an inland
wind decay model to account for landfall and will be the version
used in this study. The LGEM is a simplified dynamical inten-
sity model that uses select SHIPS predictors. Both models pro-
vide intensity forecasts at 6-h intervals with the latest model
runs being available to forecasters in real time.

DSHP and LGEM are statistical–dynamical models that are
used in the intensity consensus (ICON), the intensity variable
consensus (IVCN), and the HFIP corrected consensus approach
(HCCA; Simon et al. 2018). IVCN has equal weights between
the consensus members and has a two member minimum,
meaning that on occasion DSHP and LGEM are the only inten-
sity models included. The advantage of using DSHP and
LGEM for this analysis is that the new versions of the model
can be run over long periods of time without consuming sig-
nificant resources. Because of this, DSHP and LGEM inten-
sity change forecasts between 2010 and 2019 can be examined
using the 2020 configuration of the models, which prevents
year-to-year variations in the model formulation from affect-
ing the characteristics of the model error. We utilize DSHP
and LGEM in both the Atlantic and east Pacific basins from
2010 to 2019 to create the IBUS and test the data on the TCs
from the 2020 season which are available from the best tracks in
the Automated Tropical Cyclone Forecasting System (ATCF;
Sampson and Schrader 2000). Table 1 shows the sample size of
DSHP and LGEM forecasts from 2010 to 2019 in each basin.

We evaluate DSHP and LGEM in an intensity change
framework in which the intensity forecast over 12–168 h is
subtracted from the initial intensity. The initial intensity is de-
fined to be the intensity from the model initialization, and in
real time will not always be the same as the final intensity
found in the best track dataset. The intensity change will be
calculated and evaluated at 12-h intervals against the best track
dataset for the 2010–20 season in both the Atlantic and east Pa-
cific basins. Central Pacific TCs are not included in the sample.

To test the application of the IBUS to NHC forecasts, we
will use the official NHC forecasts from 2010 to 2019. The
NHC forecasts are in intervals of 5 kt and are available at 12-h
intervals through 72 h and at 24-h intervals beyond 72–168 h.
The forecasts beyond 120 h are experimental and not provided
to the public but are included here for completeness and po-
tential future applicability. The 60-h forecast was implemented
after the 2019 season, and will not be included in the analysis
because of the small sample size shown in Table 1. The sample
size for forecasts beyond 120 h is also significantly smaller than

TABLE 1. The sample size of forecasts in the Atlantic and east Pacific basins from 2010 to 2019 used in the development of the IBUS.

Forecast hour

Basin Model 12 24 36 48 60 72 84 96 108 120 132 144 156 168

Atlantic DSHP 2785 2468 2186 1921 1673 1474 1286 1139 1009 902 702 609 521 464
LGEM 2785 2468 2186 1921 1673 1474 1286 1139 1009 902 702 609 521 464
OFCL 2973 2644 2340 2057 163 1577 0 1222 0 968 0 407 0 307

East Pacific DSHP 3126 2755 2421 2124 1850 1610 1385 1184 992 837 629 514 413 341
LGEM 3126 2755 2421 2124 1850 1610 1385 1184 992 837 629 514 413 341
OFCL 3389 3013 2658 2338 126 1795 0 1345 0 971 0 522 0 383
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those for shorter forecast lengths because of verification con-
straints and the average duration of TCs. The average duration
of TCs in the east Pacific is shorter compared to the Atlantic
leading to fewer samples at long lead times (Table 1). As in the
case for LGEM and DSHP, the IBUS will be evaluated on TCs
from the 2020 season. Select cases are examined within the 2020
season to give more insight into the behavior of the IBUS.

b. Forecast verification

The verification of the IBUS will follow the official NHC
forecast verification rules (Cangialosi and Franklin 2014).
Forecasts are only included in the analysis and verified if the
system is a tropical or subtropical cyclone at both the forecast
initialization time and the verifying time. A tropical cyclone
that decays or transitions to extratropical within the forecast
period is not included. In addition, all other stages of develop-
ment including tropical wave, or remnant low are excluded.
Tropical depressions are included in the analysis. A homoge-
neous sample of DSHP and LGEM forecasts is used for the
development dataset while the OFCL forecasts are evaluated
independently.

The forecast verification will be measured in terms of the
mean absolute error (MAE) of the forecasts. The error is the
absolute value of the difference between the intensity change
forecast and the actual intensity change and the MAE is de-
fined as the average of the error over multiple forecasts. The
bias of the forecast is the mean of the difference between the
intensity change forecast and the true intensity change. A pos-
itive bias for intensity change forecasts means that the model
or forecaster expected the storm intensity to be stronger than
it actually was. Because intensity change can be negative, a pos-
itive bias for an intensity change forecast can be either an over-
estimated intensification or an underestimated weakening.

In this work we will use the standard deviation of errors
(STDE; s) to estimate the uncertainty in a forecast. Previous

studies, such as Bhatia and Nolan (2015), used the MAE to
estimate the uncertainty of a forecast. Both the STDE and
MAE will provide similar results and the two variables are
highly correlated (not shown). The STDE is equitable to the
root-mean-squared error for an unbiased forecast error distri-
bution. The advantage of using the STDE over MAE is that if
we assume that the forecast error distribution is normal, we
can apply the empirical 68–95–99.7 rule. The rule states that
∼68% of the data lies within one standard deviation of the
mean while 95% of the data lies within two standard devia-
tions of the mean. Using the STDE thus could give forecasters
intensity bounds when making forecasts similar to that pro-
vided by GPCE. A major assumption here is that the underly-
ing data are normal, which is often but not always the case as
will be shown later.

When forecasting intensity change, it is critical that we also
address the role that land interactions and landfalls have on
the intensity change. In a sensitivity test, it was found that in-
cluding landfall intensity change forecasts improved the rela-
tionship between forecast errors and the STDE but slightly
degraded the utility of the bias correction on intensity fore-
casts. Because of the offsetting influence and in order to cap-
ture the entire error distribution, all intensity change forecasts
that may have land impacts, including island and major land-
masses, are included in the sample. The authors note that the
bias correction skill improves by 1%–3% when landfall fore-
casts are removed (not shown).

3. The Intensity Bias and Uncertainty Scheme

a. Intensity change distributions

It is first helpful to understand the distribution of intensity
change forecasts to further motivate the development of a
bias correction and uncertainty scheme. The intensity change
distributions for 48-h forecasts from DSHP and LGEM are

FIG. 1. The number of occurrences of 48-h intensity change values from 2010 to 2019 in the Atlantic basin for the (left) best track,
(center) DSHP, and (right) LGEM. The intensity change is binned at 5-kt intervals, and the right ordinate denotes the cumulative
distribution function. The mean intensity change values for the best track, DSHP, and LGEM are also denoted.
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compared with the best track dataset intensity change distri-
butions in Fig. 1. The best track intensity change distribution
is approximately Gaussian with a slightly positive mean de-
spite a negative median. The discretization of the best track
dataset to 5-kt intervals contributes to the slight offset be-
tween the median and mean but the distribution is overall
slightly skewed. The forecast intensity change distribution for
DSHP and LGEM is also essentially Gaussian, but slightly
skewed. The number of both large positive and negative in-
tensity changes in the best track are infrequent as expected;
however, DSHP and LGEM tend to capture the relative fre-
quency of large weakening events but significantly underesti-
mates the number of large intensification events. Over 48-h
forecasts, RI is commonly defined as an increase in winds ex-
ceeding 55 kt (Kaplan et al. 2010). Neither DSHP nor LGEM
are able to predict RI at the 48-h threshold over the 10-yr data-
set, which is a known inherent limitation of statistical-dynamical
forecast models.

The underestimation of RI is a common limitation for
statistical-dynamical models because the events are rare. The
statistical models are designed to reduce forecast errors and
the penalty for RI false alarms outweighs the benefit of fore-
casting RI as too many false alarms lowers users confidence.
Capturing RI is also difficult for global forecast models be-
cause of grid resolution which cannot explicitly resolve the TC
inner core or the strongest winds found there. Forecasts of in-
tensity change within these models when RI occurs are nearly
exclusively biased too low; however, not all intensity forecasts
are biased. In Fig. 2 we show the normalized distributions of
48-h intensity change events conditioned on specific intensity
forecasts. Figure 2 shows that when DSHP forecasts a zero
change intensity (from 22 to 2 kt in 48 h), the most common
intensity change that occurs is a decrease of 5 kt, although the
mean is very close to zero. For larger intensification rates pre-
dicted by DSHP between 10 and 20 kt, the peak of the distri-
butions remain at lower intensity changes of 0 or 5 kt. LGEM
shows similar behavior for weakening forecasts with the ten-
dency to over predict the weakening rates. Overall, Fig. 2
shows that for increasing magnitudes of predicted intensity
change (both positive and negative), the distributions of in-
tensity change vary and can be treated as having different er-
ror characteristics. Treating similar intensity change forecasts
as distinct from other forecasts will form the basis of our inten-
sity change bias correction and uncertainty scheme.

b. IBUS creation

Figure 3 shows the bias, MAE, and the STDE for 12-hourly
intensity forecasts of DSHP and LGEM from 2010 to 2019.
While the bias shows that DSHP tends to have a slight posi-
tive intensity bias over the first 5 days in both basins, this
information when applied in real time may not improve fore-
cast errors. In addition, bulk estimates of the MAE or STDE
over multiple storms/years, while helpful in comparing model
performance, do not help forecasters in determining potential
errors for any individual forecast. Figure 2 showed that model
biases, as a function of intensity change, could add additional

value to forecasters by estimating when larger model biases
and larger model errors are expected to occur.

To improve both the inherent biases in the forecast models
and to gauge uncertainty in the model forecasts, we create the
IBUS. The goal is for IBUS to be a type of lookup table based
solely on data available in real time to quickly estimate ex-
pected model bias and uncertainty from retrospective data.
To do this, we use the intensity change statistics from 2010 to
2019 for DSHP and LGEM. We separate each intensity
change forecast into bins based on the forecast hour and in-
tensity change forecast and then calculate the bias, MAE and
STDE for each of those bins. Within each bin is a distribution,
such as that shown in Fig. 2, which we can treat independently
for each forecast hour and bin. The intensity change forecast
values are rounded to the nearest 5-kt forecast interval, which
is used by NHC. For example, forecasts between 8 and 17 kt
by DSHP would translate to the 10–15-kt forecast bin in Fig. 4.
The intensity change bins are varied such that 10-kt bins are
used everywhere except between 25 and 5 kt where 5-kt bin
sizes are used. This technique is used for each model in each

FIG. 2. Normalized distributions of 48-h intensity change are
stacked corresponding to when forecasts of (top) DSHP and
(bottom) LGEM were made given the intensity change values
on the ordinate. The intensity change distribution is binned
every 5 kt, and the black dots denote the mean intensity change
value for an unbiased forecast. The red text denotes the total
number of 48-h forecasts with those intensity change values.
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basin separately to account for differences in error statistics
between TCs in different basins.

Because a dependence on previous forecasts is inherently
limited by previous events, we cannot bias correct a forecast
value that has not been predicted in the past. Sample size also
becomes an issue for rare forecasts, such as the top few per-
centiles of the intensity change distribution. To account for
both limitations, extreme forecasts are binned in the top and
bottom 3rd percentiles and applied to any intensity change
that exceeds those percentiles. For example, DSHP has never
forecast a 55-kt intensification in 48 h but should it or larger
intensification rates occur, we assume that the bias would be
similar to a 45-kt intensification which is in the 97th percen-
tile. To help with bins that may have an under representative
sample of values and to reduce noise, we apply a 2D Gaussian
filter to the bias correction field. After smoothing the fields,
the result is Fig. 4, which shows the bias in shading and the
STDE in text within each bin. To get an unbiased forecast, we
would subtract the shaded values in Fig. 4 from the intensity
change forecast. The STDE in the text would be the uncer-
tainty of the forecast given the intensity change forecast and
forecast hour. It is important to note here that although Fig. 4
shows forecasts for DSHP and LGEM at extreme intensity

change rates (80 kt in 24 h), these values are caused by the
binning of the top 3rd percentile and smoothing by the Gauss-
ian filter and have never been forecast by either model. We
will explore in section 3c how to interpret the IBUS and some
basic insights gained.

c. Understanding the IBUS

The IBUS for LGEM and DSHP shown in Fig. 4 confirms
that different intensity change forecasts have different biases
and uncertainty. In the Atlantic, DSHP tends to have a posi-
tive bias for positive intensity change forecasts and small
weakening forecasts, while large weakening forecasts tended
to have a negative bias through 96 h. A more complicated pat-
tern of bias beyond 96 h is present in DSHP as 80-kt increases
over 168 h are negatively biased, a 40-kt increase over 168 h is
positively biased, and no change in intensity over 168 h is neg-
atively biased. The bias in the east Pacific for DSHP is quite
different than the Atlantic, with a near positive bias every-
where except for short term RI events. The bias distribution is
also distinctly different in LGEM between the Atlantic and
east Pacific basins.

To interpret the distribution of biases we need to consider
the sign of the bias and the sign of the intensity change. Con-
sidering both signs allows us to determine whether or not the
intensity change forecast distribution is narrowed or widened.
A positive bias for positive intensity change forecast means
that the amplitude of intensity change should be reduced
closer to zero in order to improve the model bias. A negative
bias for a positive intensity change forecast means that the
amplitude of intensity change should be increased which
would expand the intensity change distribution. In the east
Pacific, both DSHP and LGEM have a negative bias for
12–24-h forecasts of intensity change . 20 kt indicating that
intensity change forecasts within those ranges should be in-
creased (to potentially RI) in order to improve the model
bias, which would help to improve the inherent limitations of
the models shown in Fig. 1. In contrast, the same 12–24-h
forecasts in the Atlantic for both DSHP and LGEM have a
positive bias meaning that the models are predicting the large
intensity changes too often compared to observations with
too many false alarms for RI, so the intensity change forecasts
should be scaled down.

In addition to the bias correction, the STDE shown in Fig. 4
is capable of communicating the uncertainty of intensity
change forecasts assuming a normal distribution of model er-
rors. The STDE shows a systematic increase from negative in-
tensity change forecasts to positive intensity change forecasts,
with the largest STDE occurring when large intensification
events are predicted over the first 5 days. The STDE objec-
tively communicates that RI events are more difficult to fore-
cast than RW events and often have larger errors (Na et al.
2018; Trabing and Bell 2020). For example a DSHP forecast
of 50 kt in 48 h in the Atlantic has an STDE of 15 kt com-
pared to a 10-kt STDE for 250 kt in 48-h intensity change.
For forecasts in the 6–7-day range the STDE can be more var-
iable, similar to the bias, and shows that a weakening Atlantic
hurricane (from 210 to 230 kt) in 6–7 days has more

FIG. 3. The bias (dashed), mean absolute error (solid), and stan-
dard deviation of errors (stars) for DSHP and LGEM forecasts
from 2010 to 2019 in the (top) Atlantic and (bottom) east Pacific.
The dotted black line indicates zero bias.
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uncertainty than if a slight strengthening was predicted. Al-
though the STDE will provide a slightly larger estimate of ex-
pected errors compared to using MAE (e.g., Fig. 3), it is also
important that the uncertainty estimate is large enough to en-
capsulate a high percentage of the forecasts to be useful.

Overall the amplitude of the model biases and STDE in-
creases with forecast length as larger intensity change events
are possible. The biases and STDE also tend to increase in
magnitude because of the smaller sample sizes within those
bins, although we have mitigated that issue by smoothing the
resulting fields. The LGEM forecast biases in the east Pacific
are somewhat unique in that the overall biases and STDE at

longer forecast lengths are not as large as for the other models.
Even with the 10-yr dataset the sample size for intensity
forecasts extending out 7 days is limited. It should also be
noted that interpreting 6–7-day intensity change distributions
is complicated by the fact that there is little dependence on
the intensity change over the previous 5 days into the poten-
tial biases at those times. For example a 0-kt intensity change
over 7 days could indicate a steady-state storm or encompass
multiple RI and RW events within that time frame. In addi-
tion, those biases will also have a stronger dependence on
the track error distribution for the model which can be large
at days 6–7.

FIG. 4. Distribution of bias (shaded) and standard deviation of the intensity change errors (numbers; kt) for (left) DSHP and (right)
LGEM conditioned on intensity change forecasts. The bias and STDE is shown for the (top) Atlantic and (bottom) east Pacific. Bias and
STDE are shown for forecast hours at 12-h intervals with variable bin sizes of 5–10 kt for the intensity change forecasts. Bins that have a
sample size greater than 20 have bold numbers.
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4. Testing the IBUS

Now we will test the bias correction to determine if it could
potentially improve forecasts of intensity change and defini-
tively evaluate whether the STDE is able to assess forecast
dependent uncertainty.

a. Testing the bias correction

The IBUS that was developed and shown in the previous
section is now rigorously tested to determine its potential use.
First we conduct a leave-one-out validation on individual TCs
in the training dataset. We first remove all forecasts from a
single TC from the training database and then recalculate the
bias and STDE to create the IBUS. The intensity forecasts for
each forecast cycle are then bias corrected and the MAE is
calculated for both the original forecast and the bias corrected
forecast at each forecast hour. Note that each TC has a differ-
ent number of forecast cycles and verifying hours. The pro-
cess is then repeated for each TC within the 2010–19 sample
to get an adequate sample. We should note that a leave-one-
out validation was also attempted on a yearly basis, which
yielded inconclusive results because of large year-to-year

variability in the number and types of TCs. In 2017 there
were several long-lived TCs such as Maria and Irma that
had extensive intensification periods that when excluded
from the database together and tested on cause severe deg-
radation to the forecast skill.

The performance of DSHP and LGEM in both basins in
the leave-one-out validation on individual storms is shown in
Fig. 5. The box-and-whisker plot of the MAE difference be-
tween the bias corrected and original model forecasts is
shown such that positive values indicate reduced errors in the
bias corrected model. The red line is the median MAE and
the notches indicate the confidence intervals for the median
at the 95th percentile using the bootstrap method. The bias
correction overall had a neutral to positive impact on the fore-
cast errors of the models with a wide range of potential im-
provements in some TCs and degradation in others. On
average the bias correction showed positive impacts in both
basins for DSHP with small but statistically significant im-
provements to Atlantic forecasts from 24 to 72 h and larger
statistically significant improvements for forecasts beyond
48 h in the east Pacific. The bias correction did not perform
as well for LGEM with neutral to slightly negative impacts

FIG. 5. Leave-one-out validation for (left) DSHP and (right) LGEM forecasts for all (top) Atlantic and (bottom)
east Pacific TCs in the 2010–19 dataset. The bias correction model is re-derived without the storm that the model is
being tested on and then applied to all forecasts for that individual storm. The box-and-whisker plots are of the mean
error for all valid forecast hours from each individual storm and the bias-corrected model. Positive error difference
indicates reduced errors in the bias-corrected forecast compared to the original model forecast. The red lines are the
median and the notches indicate the confidence intervals for the median at the 95th percentile using the bootstrap
method with 100 000 iterations. Circles indicate outliers that are beyond 1.5 times the interquartile range from the
median. The green text indicates the sample size.
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in both basins; however, none of the degradation is statisti-
cally significant at the 95% confidence level. Because the
bias correction has overall small biases in the short term,
the range of MAE differences gets larger with forecast
length for each case excluding LGEM in the east Pacific.

To further evaluate the bias correction component of the
IBUS, we now verify the IBUS for each model on the 2020
season using the 2010–19 training dataset. Figure 6 shows the
MAE for the original forecasts and the bias corrected fore-
casts for each TC and the weighted mean. In the Atlantic,
the bias correction was able to reduce the intensity errors for
5–7-day forecasts of both DSHP and LGEM compared to the
operational models. By comparing the cases, we can deter-
mine that improvements caused by the bias correction were
largest in cases that had overall large forecast errors. In the
Atlantic, some of the largest average forecast errors came
from Tropical Storm Gonzalo, Hurricane Paulette, and Tro-
pical Storm Rene (AL07, AL17, and AL18) which were all
improved by the bias correction. In contrast, the bias correc-
tion degraded forecasts for Tropical Storm Cristobal (AL03)
and Hurricane Laura (AL13), where multiple interactions with
land and landfall events occurred. Although landfall forecasts
were included in the sample, the potential for changes to the
intensity such as suggesting an increase in intensity overland,
can lead to errors in the bias correction which will be incorpo-
rated into future work.

In the east Pacific, Fig. 6 shows that the bias correction per-
formed just as well as in the Atlantic despite the lower sample
size. The bias-corrected DSHP and LGEM forecasts had

reduced average errors for forecasts beyond 72 h, with the ex-
ception of the 168-h forecasts of DSHP. The bias correction
had an overall small effect on the average short term forecast
errors where intensity forecasts have already low errors. Simi-
lar to the Atlantic, the bias correction was able to successfully
reduce the average forecast errors for cases in which large in-
tensity errors were present. DSHP had large forecast errors
for Tropical Storms Cristina, Fausto, and Norbert (EP05, EP12,
and EP19) while LGEM struggled the most with Tropical
Storm Cristina, Tropical Storm Fausto, and Hurricane Douglas
(EP05, EP12, and EP08). In each of the cases for both models,
the bias correction was able to reduce the MAE of the intensity
forecasts at nearly all forecast hours. However, we would like
to emphasize that the bias correction does not improve all
of the forecasts, and small degradation is found in cases with
already low forecast errors such as for Tropical Storm Karina
(EP16).

Overall, the application of the bias correction appears to
have a positive impact on the MAE of the individual models
in both basins, with the most benefit at longer forecast times.
The simple scheme is only a function of the intensity change
forecast and forecast hour which can be quickly calculated
from the ATCF and applied in real time, or taken into consid-
eration by forecasters upon examining Fig. 4.

b. Testing the uncertainty estimation

Now we will examine whether the STDE over each forecast
hour can communicate uncertainty in the model forecast. To
objectively determine the value of the STDE we examine the

FIG. 6. Mean absolute error (MAE) with forecast hour for each TC in 2020. The MAE for each individual TC is
shown with the gray lines (operational forecast) with the light orange being the bias-corrected forecast errors. The
weighted mean for the original forecasts is shown by the black line, and the weighted mean for the bias-corrected
forecasts is shown by the red line. The sample size is indicated by red text.
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correlation between the STDE from the predicted intensity
change to the absolute error of the forecast. To examine the
correlation, we need to have a large training and testing sam-
ple, so we perform this analysis on all TCs in the 2020 dataset
using the 2010–19 IBUS.

Figure 7 shows the correlation between the absolute error
and the STDE for DSHP and LGEM in the Atlantic and east
Pacific basins. The correlation between STDE and absolute
forecast errors is positive over the first 120 h for each model
and in both basins. The positive correlation means that larger
errors are found when the STDE is larger, which is the ex-
pected result (Trabing and Bell 2020). The positive correla-
tion indicates that the STDE can communicate the desired
uncertainty but with varying degrees of success. DSHP and
LGEM in the Atlantic have statistically significant correla-
tions over the first 120 and 84 h, respectively, which are stron-
gest for 36–48-h forecasts and decreases with increasing forecast
length. The variance explained for DSHP and LGEM for 48-h
forecasts is 7% and 11%, respectively. The small variance ex-
plained is not surprising, given the small range of potential
STDE values shown in Fig. 4. This variance is the amount ex-
plained solely by the intensity change forecast within the model
and exceeds the 5%–6% error variance explained for 12–48-h
forecasts using the GPCE in 2012 (Goerss and Sampson 2014).
In the east Pacific, the error correlation tended to increase with
forecast hour, reaching to correlations just below 0.5 at 120 h.
Similar increases in error variance with forecast length was
found for east Pacific TCs in Goerss and Sampson (2014), which
suggests that east Pacific forecast errors are easier to explain in
terms of intensity change compared to those in the Atlantic.
The variance explained by the STDE is lower in the east Pacific
over the first 48 h compared to the Atlantic with 4% for DSHP
and 8% for LGEM.

For forecasts beyond 120 h, the correlation between STDE
and absolute errors is weaker and reverses sign for some fore-
cast hours. DSHP in the east Pacific has a negative correlation
between the error and STDE which means that DSHP had re-
duced errors for those forecasts compared to the errors that
had occurred in the 2010–19 dataset. The reason for the nega-
tive correlation is partially due to the low sample size of fore-
casts in the east Pacific in 2020, but it also indicates that the
sample size of the 2010–19 dataset for day 5–7 forecasts is not
large enough in some intensity change forecast bins to be
characterized as normal. Another contributor to the low cor-
relations beyond day 5 is that track errors will play more of a
role in the uncertainty forecasts which have not been consid-
ered in this framework. The negative correlations suggest that
at long range, the intensity uncertainty is more related to
other factors including track than the intensity change fore-
cast alone.

Despite the small variance explained between absolute
error and STDE, the results are similar in magnitude to the
performance of GPCE which predicts the errors for IVCN
(Goerss and Sampson 2014). The simple uncertainty esti-
mates are derived from past performance but adds informa-
tion beyond the static estimates of MAE or STDE over the
course of a season. While the bias correction showed the
most promise for forecasts with longer lead times, the

uncertainty estimates appear to perform better over shorter
forecast lengths in the Atlantic.

c. IBUS example

As stated earlier, the IBUS is based solely on previous fore-
casts of intensity change biases and is essentially a lookup ta-
ble that can be implemented in seconds. Figure 8 shows two
examples of how IBUS could be implemented on DSHP and
LGEM and potentially be used for a consensus. The first fore-
cast for Hurricane Laura (AL132020) was while land interac-
tions and track uncertainty near the islands in the Caribbean
were causing forecasts to agree on a slight weakening of the
storm which resulted in low biases for DSHP, LGEM, and the
average. The shading and black dashed lines are the STDE
which helps to show the uncertainty in the forecast of which
the actual intensity was located just above the uncertainty es-
timates until RI began. The larger shading (blue and orange)
near the time of RI helps to communicate that the intensity of
Laura at that time is more uncertain. The intensification of
Hurricane Laura to peak intensity at the 96-h forecast was in the
99th percentile of intensity change forecasts for both statistical-
dynamical models. The forecasts of intensity after landfall of
Laura have the most uncertainty, although in actuality that

FIG. 7. The correlation between the mean absolute error of 2020
forecasts and the standard deviation of errors derived from the in-
tensity change distributions. Stars indicate a statistically significant
correlation from zero at the 95% confidence level. Sample size for
the corresponding model is shown in the colored text.
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intensity uncertainty is likely falsely characterized at the end
of the forecast because of the land interactions. On average,
we would expect lower forecast errors to occur when a TC
moves over land and weakens as a function of its peak winds
(Kaplan and DeMaria 1995). The IBUS does not include the
effects of land and in this form cannot account for uncertain-
ties in the timing of landfall which will heavily affect the inten-
sity forecast. As such the bias correction tended to indicate a
stronger tropical cyclone post landfall at 132 h.

The forecasts of Hurricane Douglas (EP082020) for LGEM
and DSHP tended to underestimate the intensity. The bias
corrections to the statistical–dynamical models were opposite

early on such that the IBUS for DSHP would have reduced
the intensity forecast but for LGEM the intensity would have
increased which had an overall negligible effect on the mean
though 72 h. Beyond 72 h the biases between DSHP and
LGEM were similar such that the overall forecast was im-
proved. For this forecast of Hurricane Douglas, the STDE did
not extend far enough to capture the actual intensity evolution
for most of the forecast which is due to the models not captur-
ing the extent of RI that Douglas underwent over the first 24 h
of the forecast. Although the RI was significantly under fore-
cast, the upper bound provided by the STDE nearly matched
the actual intensity for the forecast between 60 and 108 h

FIG. 8. (top) Intensity forecasts for AL132020 (Laura) initialized at 0000 UTC 23 Aug and
(bottom) forecasts for EP082020 (Douglas) initialized at 0600 UTC 22 Jul. The black line is the
6-h preliminary best track intensity. The forecasts for DSHP, LGEM, and the mean are shown
in dashed lines with the bias-corrected versions indicated by the solid lines with stars. The shad-
ing for DSHP (blue) and LGEM (orange) shows 6STDE with the bias-corrected ensemble
STDE shown using the black dotted line. Note that the dark gray shading is where the DSHP
and LGEM STDE overlap. The Saffir–Simpson wind speed intensity categories are denoted in
alternating gray–white shading. The forecasts are shown through 132 h.
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after rounding to 5-kt intervals. Both the bias and uncer-
tainty estimate in this case adds value to understanding the
forecast and its limitations.

5. Application to NHC forecasts

We have shown that the IBUS can be used for statistical–
dynamical models, but this framework is also applicable to dy-
namical models with a large enough dataset and to forecasts

from the NHC. We will now explore what the IBUS would
look like for NHC forecasts using the data available from
2010 to 2019. Because NHC forecasts only in 5-kt intervals
and only for a limited number of forecast hours, we apply all
the same steps as before but we do not apply any smoothing
to the bias or STDE fields because of the differences in fore-
cast hour resolution. The biases are then rounded to the near-
est 5-kt interval consistent with the intervals used by NHC
forecasters.

FIG. 9. (top) Distribution of bias for official NHC forecasts of Atlantic hurricanes from 2010
to 2019. The number listed is the bias rounded to the nearest 5-kt interval for each intensity
change forecast and forecast hour. (bottom) The number of forecasts (shaded) and STDE
(numbers; kt) for each intensity change and forecast hour bin. Forecast hours are shown for op-
erational intensity change forecasts at 12-h intervals extended to 24 h beyond 3 days. Variable
bin sizes of 5–10 kt for the intensity change forecast are utilized similar to Fig. 4. Biases and
STDEs are not shown for bins that have no forecasts within the 10-yr sample.
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Figure 9 shows the bias, STDE, and the sample size as a
function of forecast hour and forecast intensity change in the
Atlantic. The biases show that NHC forecasters tend to have
a zero bias on most 12–72-h forecasts. OFCL forecasts of RI
in the Atlantic show a near zero bias over the 2010–19 time
frame, although a negative bias is present if the sample is lim-
ited to the 2015–19 time frame (not shown). As was also
shown in Trabing and Bell (2020), RW forecasts have a posi-
tive bias meaning that the amount of intensity change is under
predicted. Beyond 72 h that bias appears reversed, with large
intensification forecasts having a positive bias and large weak-
ening forecasts being negatively biased. Figure 10 shows the
bias in the east Pacific which overall has similar biases but
with increased amplitudes compared to the Atlantic through

120 h. There are overall more large weakening events in the
east Pacific compared to the Atlantic where RW and decay is
less common and extratropical transitions, which are not in-
cluded in the verification, are common (Jones et al. 2003;
Wood and Ritchie 2015). The negative bias for RI events over
12–72 h is more pronounced in the east Pacific.

The STDE is indicated by the numbers in the bottom pan-
els of Figs. 9b and 10b for the Atlantic and east Pacific. For
forecast lengths of less than 72 h, the STDE is larger for inten-
sification forecasts compared to weakening forecasts which is
similar to what was shown for DSHP and LGEM. There are
variations in the STDE between the basins such as a larger
STDE for short term RI forecasts in the east Pacific compared
to the Atlantic. Despite overall smaller biases in the east

FIG. 10. As in Fig. 9, but for the east Pacific basin.
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Pacific, there appears to be a larger STDE in the east Pacific.
One potential reason for the larger uncertainty in the east
Pacific is the more common RI and RW events found there
(Kaplan et al. 2010; Hendricks et al. 2010; Trabing and Bell 2020).

The IBUS for NHC forecasts in the Atlantic and east
Pacific are now evaluated on the 2020 season, although we
only show the results of the uncertainty estimation in Fig. 11.
The bias correction shows mixed results due to the fact that
OFCL forecasts are issued in 5-kt intervals (not shown). The ab-
solute error to STDE correlation is found to be positive in the
Atlantic and east Pacific basins through 120 h, consistent with the
results for DSHP and LGEM (Fig. 7). Over the forecasts through
48 h in the Atlantic, the correlation is statistically significant at
the 95% level but only explains ∼6%–13% of the variance in the
forecasts. The 24–48-h forecasts in the east Pacific show a small
but statistically significant relationship between the STDE and
the absolute errors explaining up to 9% variance at 48 h. The
correlation is larger for 48–120-h forecasts in the east Pacific
which have a smaller sample size. The variance explained in the
72–96-h forecasts by the IBUS in the east Pacific is 24%–30%.

In addition to the error correlation, we also calculate the
percentage of NHC forecasts where the intensity exceeded
61 STDE from the forecast intensity, shown in Fig. 11. It is
important that the STDE be both large enough to capture un-
certainty but not too large such that every forecast be con-
tained within the bounds. Empirically we would expect that
given a large enough sample size, that roughly 68% of fore-
casts would lie within one standard deviation. Overall, the
number of forecasts within that range is ∼80% over 120 h
in the Atlantic dropping to ∼65% beyond 120 h. In the east
Pacific there were too many forecasts within the STDE range
(∼90%) over the first 48 h which is one reason for the low ab-
solute error–STDE correlation found there. The percentage
slightly increased in the east Pacific with forecast length after
72 h from 69% to just above 70% at 168 h. Given the fairly ro-
bust sample size in the Atlantic in 2020, we can state that
approximately 4 out of 5 forecast intensities through 120 h
would lie within the bounds estimated by IBUS, which is
slightly larger than the a priori estimates from GPCE and could
be valuable to recipients of NHC forecasts.

In real time, the IBUS for NHC intensity forecasts could be
applied after forecasts are made. Although the bias correction
could be applied to the forecasts, it would be preferable to re-
lay the potential biases to the forecaster for consideration and
only apply the uncertainty scheme. Figure 12 shows two NHC
forecasts with the bias correction applied with the uncertainty
scheme for both the bias corrected and official forecasts. The
forecasts are at the same times shown earlier for LGEM and
DSHP forecasts of Hurricane Laura and Hurricane Douglas
in Fig. 8. In both cases, the STDE provides a good estimate of
the range of potential intensities of the TCs. The STDE also
well communicates that the largest uncertainty will occur
where the intensification of Hurricane Laura is expected on
27 August and near and after the time of peak intensity in
Hurricane Douglas from 0600 UTC 24–25 July. The forecast
for Hurricane Laura did not have a bias; however, the bias
correction if applied to the Hurricane Douglas forecast
would have amplified the intensification and lead to an over-
all reduction of errors by the NHC forecasters.

In summary, we have shown that an IBUS can be created for
the NHC forecast. The IBUS shows that intensification fore-
casts up to 72 h have the most uncertainty and are generally
negatively biased, while weakening forecasts have lower uncer-
tainty and are positively biased. Using this simple approach,
we can explain a small amount of the variance in the intensity
forecast errors that encompasses roughly 75% of the forecast
intensity. The uncertainty estimation can be quickly run in real
time and could provide meaningful, state dependent uncertainty
forecasts for intensity change that are based on NHC forecast
skill. Because the IBUS relies on past performance, better fore-
casts can reduce the STDE such that as intensity forecasts im-
prove with time, so too will the uncertainty estimates.

6. Conclusions

In this manuscript, we have documented how a bias correc-
tion and uncertainty scheme can be created for deterministic
forecasts. Because some intensity change forecasts are known

FIG. 11. (top) The percentage of intensity forecasts within
61 STDE of the intensity change forecast for all forecasts in 2020
in each basin based on the IBUS computed from 2010 to 2019. The
numbers indicate the number of forecasts within the Atlantic (red)
and east Pacific (blue) basins. (bottom) The correlation between
the STDE and OFCLMAE in the 2020 season for each basin. Stars
indicate a statistically significant correlation from zero at the
95% confidence level.
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to be more accurate than others (Na et al. 2018; Trabing and
Bell 2020), an Intensity Bias and Uncertainty Scheme (IBUS)
can be created based solely on intensity change forecasts from
the initial to the verifying time. The IBUS is created by bin-
ning intensity change forecasts over discrete forecast hours
and evaluating the bias and the standard deviation of the fore-
cast errors. The IBUS essentially gives a historical perspective
(relative to the training dataset) of how well similar forecasts
of intensity change performed in the past to forecast the bias
and uncertainty.

The IBUS is developed on the 2010–19 dataset of DSHP
and LGEM forecasts and then used to evaluate the 2020 Atlantic
and east Pacific hurricane season. The IBUS was able to suc-
cessfully communicate forecast uncertainty for the DSHP and
LGEM models with 7%–11% of the variance explained in in-
tensity errors at 48 h in the Atlantic. The bias correction was
able to reduce the 2020 forecasts errors beyond 96 h in both

models with the largest improvements in errors coming from
TCs with already large mean absolute errors. The model un-
certainty estimates in the east Pacific showed slightly different
characteristics compared to the Atlantic, which could be due
to the lower number of TCs in 2020. When applied to the east
Pacific, IBUS better communicated the forecast uncertainty in
the 48–120-h forecasts with the variance explained reaching up
to 30%.

When applied to NHC forecasts, the IBUS is able to pro-
vide uncertainty estimates for forecasts in a similar manner as
the “cone of uncertainty” for track forecasts but also convey
that some intensity change forecasts are more predictable
than others. The IBUS for NHC forecasts is trained on the
data from 2010 to 2019 and evaluated on the 2020 season.
Using this simple approach, the IBUS explains a small
amount of the variance in the intensity forecast errors which
encompasses roughly 80% of the forecast intensities through

FIG. 12. Same intensity forecast times as Fig. 8, but with the official NHC forecasts. The STDE
from IBUS is applied to both the bias-corrected intensity forecast (red) and the actual forecast
(blue) where the hatching indicates the STDE for the bias-corrected and original forecast.
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day 5. The IBUS provides uncertainty forecasts for intensity
change that meaningfully changes based on error character-
istics over the previous 5 years of NHC forecasts. Because
the IBUS relies on past performance, better forecasts with
time can reduce the STDE such that as intensity forecasts
improve with time, so too will the uncertainty estimates.
Further testing of the IBUS and applications to NHC fore-
casts is still needed before being recommended for opera-
tional use.

There are several advantages of using this framework.
First, the IBUS can be quickly run and updated in real time.
The simplicity of the scheme means that the training dataset
can be continually updated during the season allowing the
training dataset to constantly improve. Similar to what was
employed in Krishnamurti et al. (2011) after a storm dissi-
pates and if no other storms are present in the basin, fore-
casts from that storm can be added to the training set. The
IBUS is also created solely on individual model perfor-
mance and a homogeneous sample is not required for appli-
cation to a consensus of forecast models. In addition, the
uncertainty estimate for intensity in this framework pro-
vides the same messaging as the “cone of uncertainty.”
When an intensity forecast is made, the intensity should fall
within the STDE roughly 70% of the time and when applied
to NHC forecasts is directly related to the past performance
of the forecasters.

The IBUS is inherently limited by its simplicity and needs a
robust sample of cases. We assume that each forecast hour
and intensity change bin can be characterized as a normal dis-
tribution, which is not always the case for extreme intensity
changes and for long forecast hours. The scheme itself does
not discriminate between forecasts where land interactions
are present and cannot add uncertainty in the cases of islands
or reduce uncertainty for expected landfalls of a TC in the
Gulf of Mexico. In addition, by binning the intensity changes
at discrete hours, the bias and STDE is somewhat indepen-
dent of other forecast hours. For example, a bias for the inten-
sity change forecast of 110 kt in 96 h does not consider
whether there was an increase of 30 kt in the first 48 h and a
weakening of 20 kt in the following 48 h or if that storm was
steady state for 84 h and increased by 10 kt in the last 12 h. By
smoothing the fields we are able to reduce some of the noise
from sample limitations and communicate the biases from
one forecast hour to the next but in a limited capacity. Im-
proving these limitations is the focus of ongoing work.

Future work will explore the application of the methodol-
ogy used here to many different operational forecast models
used by NHC. The development of a consensus uncertainty
estimate from multiple regional forecast models is ongoing.
With future advancements in computing, dynamic intensity
forecast uncertainty can be provided by multimodel regional
ensembles. The simplicity of the IBUS to diagnose forecast
uncertainty should be used as a baseline for testing future un-
certainty estimates as a single climatological value is not suffi-
cient. Future work will also include developing an integrated
measure for both track and intensity uncertainty because
those errors can be dependent on each other.
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